Detailed marking instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark
1.			Ans: 9600 (mm)		2
			•¹ Strategy: know to calculate minimum length of brick x 50	•¹ (194 - 2) × 50	
			• ² Process/communication: answer	•² 9600	

Notes:

1. Any attempted unit conversions must be correct for award of $\, ullet^2 \,$

Commonly Observed Responses:

1. For $(194 \times 50) - 2$ leading to 9698.

award 1/2 ×√

2. For $(194+2)\times 50$ leading to 9800.

award 1/2 ×√

3. For 194×50

leading to 9700.

award 0/2 xx

Question		on	Generic scheme	Illustrative scheme	Max mark
2.	(a)		Ans: (£)2600		3
			•¹ Strategy: know to calculate 2.5% of £6000	•¹ evidence	
			• Process: calculate 2.5% of £6000	•² 150	
			• 3 Strategy/process: add commission to basic salary	•³ 2600	

- 1. Accept $6000 \div 2.5$ as evidence of knowing to calculate 2.5%.
- 2. \bullet ³ is only available for adding commission to £2450.

Commonly Observed Responses:

1. For 2.5% of £9000=£225 leading to a final answer of £2675.

award 2/3 ×√√

2. For 2.5% of £2450=£61.25 leading to a final answer of £2511.25.

award 2/3 ×√√

3. For 2.5% of £3000=£75 leading to a final answer of £2525.

award 2/3 ×√√

4. For 2.5% of £(9000-2450)=£163.75 leading to a final answer of £2613.75.

award 2/3 ×√√

Question		on	Generic scheme	Illustrative scheme	Max mark
2.	(b)		Ans: (£)1870·39		2
			• 1 Strategy: attempt to calculate gross pay - total deductions	•¹ evidence	
			•² Process: calculate net pay	•² 1870·39	

1. For reference: total deductions = 729.61

- 1. For candidates who calculate a gross salary in part (a) of £2675 leading to a net pay of £1945·39. award 2/2 ✓✓
- 2. For candidates who calculate a gross salary in part (a) of £2511·25 leading to a net pay of £1781·64. award 2/2 ✓✓
- 3. For candidates who calculate a gross salary in part (a) of £2525 leading to a net pay of £1795·39. award 2/2 ✓✓
- 4. For candidates who calculate a gross salary in part (a) of £2613·75 leading to a net pay of £1884·14. award 2/2 ✓✓

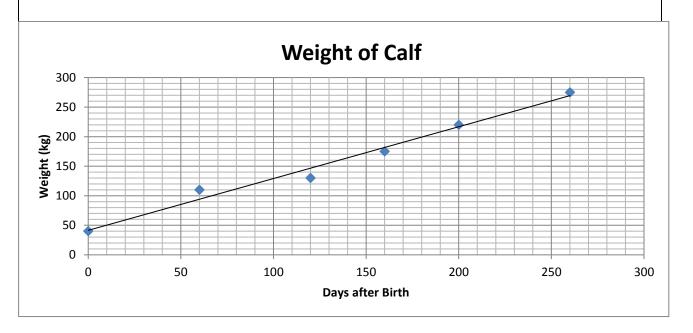
Question		on	Generic scheme		Illustrative scheme					Max mark	
3.	(a)		Ans: Points plotted correctly Ommunication: 4 points correct Communication: all 6 points	D W	0 40	60 110	120 130	160 175	200 220	260 275	2
			correct								

1. If candidate inverts all coordinates

award 1/2

Commonly Observed Responses:

(b)	Ans: Line of best fit		1
	•¹Strategy: consistent line of best fit	•1	


Notes:

Commonly Observed Responses:

(c)	Ans: (days)		1
	•¹ Communication: answer consistent with line of best fit	•1	

Notes:

1. Accept answer rounded to the nearest 10 days.

Question		Generic scheme	Illustrative scheme	Max mark
4.		 Ans: No, supported by working. Strategy: know how to calculate gradient Process: know how to compare gradients of new trail and blue 	•¹ 1·6/8 •² 4/20 (3/20 does not need to be explicitly stated) or	3
		• 3 Strategy/ communication: consider the blue gradient and consistent conclusion	8/40 and 6/40 or 0·2 and 0·15 or equivalent • 3 No, supported by working	

1. For 1.6/8 followed by "No" with no other working.

award 1/3

2. For 1.6/8 = 5 followed by blue gradient 6.666... leading to "Yes".

award 2/3

- **3.** •² can only be awarded for two gradients with the same denominator, or the same numerator, or for two decimal fractions.
- **4.** ³ can only be awarded where two gradients with the same denominator, or the same numerator, or for two decimal fractions have been compared.
- 5. Special case: If a candidate's answer for new trail is a top heavy fraction only \bullet^3 is available. This mark is only available if reference is made to a gradient from the table.

Question		ion	Generic scheme	Illustrative scheme	Max mark
5.	(a)		Ans: Bands D and A		1
			•¹ Communication: state bands required	• 1 10 × 14 +1 = 141, she needs bands D and A	

1.	Bands D and A without working	award 1/1
2.	For 140 lbs leading to bands D and A	award 1/1

2. For 140 lbs leading to bands D and A 3. D and A circled on the table

award 1/1

4. Accept $10 \times 14 = 141$ bands D and A (treat as bad form)

award 1/1

5. For any incorrect calculation leading to bands D and A

award 0/1

Commonly Observed Responses:

(b)	Ans: Shop 2		3
	• 1 Process: calculate cost for shop 1	•¹ 49·50	
	• Process: calculate cost for shop 2	• ² 45·48	
	• ³ Communication: conclusion consistent with working	³ Shop 2	
	Alternative Strategy:		
	• 1 Process: calculate discount for 1 shop	o ¹ 26·30 or 30·32 or 27·81	
	• Process: calculate discount for other two shops	•² remaining two	
	• ³ Communication: conclusion consistent with working	³ Shop 2	

Notes:

1. ● 3 can only be awarded for comparing 3 costs or 3 discounts.

Commonly Observed Responses:

1. Shop 1 £49·50, Shop 2 £30·32, Shop 3 £47·99 leading to conclusion Shop 2

award 1/3 ✓××

Ques	Question		Generic scheme	Illustrative scheme	Max mark
6.			Ans: (£)6 286 500		3
			• 1 Strategy/process: calculate one(£1)share	•¹ 2 794 000 ÷ 4 = 698 500	
			• ² Process: calculate total number of shares	$\bullet^2 \ 2.50 + 2.00 + 4.00 + 0.50 = 9$	
			• ³ Process: calculate total amount	• 3 9 × 698 500 = 6 286 500	
			Alternative Strategy 1		
			• 1 Strategy/process: calculate one (50p) share	•¹ 2 794 000 ÷ 8 = 349 250	
			• ² Process: calculate total number of shares	\bullet^2 1 + 4 + 5 + 8 = 18	
			• ³ Process: calculate total amount	• 3 18 × 349 250 = 6 286 500	
			Alternative Strategy 2		
			• 1 Strategy/process: calculate the amount for any teacher other than Mr Young	• 1 Miss Smith 1 397 000 or Mr Jones 349 250 or Mr Ross 1 746 250	
			• Process: calculate the amount for another teacher	•² either of remaining two	
			• ³ Process: calculate amount for final teacher and total amount	• 3 1 397 000 + 349 250 + 1 746 250 + 2 794 000 = 6 286 500	

1. \bullet^2 can be implied by subsequent working.

Commonly Observed Responses:

1. For 2 7940 00 ÷ 9 = 310444.44310444.44 × 4 = 1241777.76.

award 2/3 ×√√

Question		Generic scheme	Illustrative scheme	Max mark
7.	(a)	Ans: 20 (cm ²)		2
		• 1 Strategy: know how to calculate composite area	•¹ Evidence of any valid strategy	
		• ² Process: calculate area	$\bullet^2 \text{ eg } 24-4=20$	

1. Accept $8+2\times2=20$ as bad form.

Commonly Observed Responses:

1. For $2 \times 8 + 1 \times 4 + 1 \times 4 = 24$.

award 1/2 √×

2. For calculation of two rectangles eg $4 \times 3 + 4 \times 2 = 20$

award 1/2 ×√

(b)	Ans: (£)30		3
	• 1 Process: calculate the number of badges per pack	\bullet^1 180 ÷ 20 = 9	
	• ² Process: calculate the cost of enamel for 1 badge	$e^2 90 \div 9 = 10$	
	• ³ Process: calculate selling price	•³ 10 + 3 + 17 = 30	
	Alternative Strategy:		
	• 1 Process: calculate the number of badges per pack	\bullet^1 180 ÷ 20 = 9	
	• Process: calculate the total cost of 9 badges	$\bullet^2 9 \times 3 + 9 \times 17 + 90 = 270$	
	• ³ Process: calculate selling price	$\bullet^3 270 \div 9 = 30$	

Notes:

- 1. If the cost of the enamel is not considered then only \bullet^1 is available.
- 2. In the alternative strategy, if the candidates answer to \bullet^2 is not divisible by 9, \bullet^3 is only available for an answer rounded or truncated to 2 decimal places.

Que	Question		Generic scheme	Illustrative scheme	Max mark
8.			Ans: $\frac{12}{100} \left(= \frac{3}{25} \right)$		3
			• 1 Strategy: evidence of identifying the blood groups that B+ can help	● 1 eg AB+ and B+	
			• ² Communication: interpret stacked bar chart	• ² 3 people AB+ and 9 people B+	
			• ³ Process: calculate fraction	$\bullet^3 \frac{3+9}{100} = \frac{12}{100} \left(= \frac{3}{25} \right)$	

1. Correct answer with no working.

award 3/3

- 2. Accept 0.12, 12% or any fraction equivalent to $\frac{12}{100}$
- 3. For any answer other than $\frac{12}{100}$, $\frac{62}{100}$, $\frac{15}{100}$, $\frac{9}{100}$ & $\frac{3}{100}$, with no working award 0/3

- For an answer of $\frac{62}{100}$ (B+ row is taken from the chart instead of the B+ column) (with 1. award 2/3 ×√√ no working)
- For an answer of $\frac{15}{100}$ (the complete bars for AB and B are taken from the chart) (with 2. award 2/3 ×√√ no working)
- For an answer of $\frac{9}{100}$ (B+ only) For an answer of $\frac{3}{100}$ (AB+ only) 3. award 1/3
- award 1/3

Que	Question		Generic scheme	Ilustrative scheme Max mark
9.	(a)		Ans: 27·42 (cm)	4
			•¹ Strategy: correct substitution in Pythagoras' Theorem) ² - 6 ²
			• Process: calculate the missing side $^2 x = 8$	
			• ³ Process: calculate length of the semi-circle	x 6 ÷ 2 = 9·42
			• ⁴ Process: calculate the perimeter of the shape	8 + 9·42 = 27·42

- 1. \bullet^1 and \bullet^2 are available for correct answer without working (Pythagorean triple).
- 2. 1 cannot be awarded if candidate writes $6^2 10^2$.
- 3. 2 can be awarded if candidate writes $6^2 10^2$ leading to x = 8.
- 4. •4 is only available for adding 10 to two previously calculated lengths.
- **5.** \bullet^4 is not available if the candidate states that they are adding calculated **areas**.

- 1. For $3.14 \times 6+10+8$ leading to a final answer of 36.84. award $3/4 \checkmark \checkmark \times \checkmark$
- 2. For $\frac{1}{2} \times 3.14 \times 3^2 + 10 + 8$ leading to a final answer of 32.31. award 3/4 $\checkmark\checkmark\times\checkmark$
- 3. For $3.14 \times 3^2 + 10 + 8$ leading to a final answer of 46.26. award $3/4 \checkmark \checkmark \times \checkmark$
- 4. For $\frac{1}{2} \times 3.14 \times 6 + 10 + 8 + 6 + 6$ leading to a final answer of 39.42 award 3/4 $\checkmark\checkmark\checkmark$

Que	Question		Generic scheme	Illustrative scheme	Max mark
9.	(b)		Ans: 13·56 (cm²) •¹ Strategy: know how to	• ¹ evidence	2
			calculate area of rectangular strip		
			• Process: calculate the area of the strip	$\bullet^2 (27.42 - 0.3) \times \frac{1}{2} = 13.56$	

1. \bullet^1 is available for evidence of subtracting 0.3 and then multiplying by 0.5

Commonly Observed Responses:

1. For
$$27.42 \times \frac{1}{2} = 13.71$$

award 1/2 ×√

2. For
$$0.3 \times 0.5 = 0.15$$

award 0/2 xx

[END OF MARKING INSTRUCTIONS]

Detailed marking instructions for each question

Qu	Question		Generic scheme	Illustrative scheme	Max mark
1.			Ans: 2309 cm ³ or 2309 ml or 2·309 l		3
			 Strategy: know how to calculate the volume of half a cylinder 	•¹ evidence	
			• ² Strategy: substitute into formula	$\bullet^2 \frac{1}{2} \times \pi \times 7^2 \times 30$	
			• ³ Process: calculate the volume and state units	•³ 2309·07cm³	
			Alternative Strategy:	1	
			 1 Strategy: know to calculate the area of the semi-circle and multiply it by 30 	•¹ evidence	
			• ² Strategy: substitute into semi- circle formula	$\bullet^2 \frac{1}{2} \times \pi \times 7^2$	
			• ³ Process: calculate the volume and state units	• 3 $76 \cdot 96 \times 30 = 2309 \cdot 07 \text{ cm}^{3}$	

Question	Generic scheme	Illustrative scheme	Max mark				
Notes:	otes:						
1. ●² only ava	ailable when 7 is used as radius.						
2. Accept leg	itimate variations of π .						
3. For the fin figures.	al answer accept any legitimate roun	ding or truncation to at least 2 signif	icant				
4. Correct an	swer with no working	award 0	/3				
5. $V = Ah$ on	its own is not sufficient evidence for	• •¹ .					
6. ●³ is only a find a volu	available for calculations involving π me.	, a power and at least one other num	ber to				
7. If formula	does not involve π then	award 0	/3				
8. If $V = \frac{1}{3}\pi r$ places. \bullet^2	$^{2}h \div 2$ is used, approximations of $\frac{1}{3}$ m and \bullet^{3} are available.	ust be expressed to at least 2 decima	l				
9. If $V = \frac{4}{3}\pi r^2$ •2 and •3 a	$\frac{4}{3}$ re available.	st be expressed to at least 2 decimal	places.				

Question	Generic scheme	Illustrative scheme	Max mark						
Commonly Obs	erved Responses:								
Working must I	Working must be shown								
1. For $\frac{1}{2} \times 3.14$	$4 \times 7^2 \times 30 = 2307.9 \text{ cm}^3$	award 3/3 ✓	√ √						
2. For $\frac{1}{2} \times \pi \times 7$	$^{2} \times 14 = 1077 \cdot 56 \text{ cm}^{3}$	award 2/3 × v	/ /						
3. For $\frac{1}{2} \times \pi \times 7$	$^{-2} \times 30 \times 14 = 32326 \cdot 99 \text{ cm}^3$	award 2/3 ×	/						
4. For $\pi \times 7^2 \times 10^{-2}$	30 = 4618·14cm ³	award 2/3 ×	/ √						
5. For 3·14×7	$^{2} \times 30 = 4615 \cdot 8 \text{ cm}^{3}$	award 2/3 × v	/ √						
6. For $\frac{1}{2} \times \pi \times 1$	$4^2 \times 30 = 9236 \cdot 28 \text{ cm}^3$	award 2/3 ✓	×√						
7. For $\frac{1}{2} \times 3.14$	$4\times14^2\times30=9231\cdot6\text{cm}^3$	award 2/3 ✓	×√						
8. For $\pi \times 7^2 =$	153 · 9 cm ³	award 1/3 ×	/x						
9. For $\pi \times 14^2 \times$	$30 = 18472 \cdot 56 \text{ cm}^3$	award 1/3 ×	« √						
10. For 3·14×14	$4^2 \times 30 = 18463 \cdot 2 \text{ cm}^3$	award 1/3 ×	<√						
11. For 14×7×3	$30 = 2940 \text{ cm}^3$	award 0/3 ×	κ×						

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
2.	(a)		Ans: (£)6150·64		5
			•¹ Process: work out the cost of 8000 shares	•¹ 8000 × 0·73 = 5840	
			• ² Strategy: know how to calculate percentage decrease	•² Evidence of 0.97	
			• ³ Strategy: know how to calculate percentage increase	• ³ Evidence of 1·042	
			• ⁴ Strategy: identify power	•42	
			• ⁵ Process: calculate the value of the shares	● ⁵ 6150·64	
			Alternative Strategy 1:		
			• 1 Strategy: know how to calculate percentage decrease	●¹ Evidence of 0·97	
			• ² Strategy: know how to calculate percentage increase	•² Evidence of 1·042	
			• ³ Strategy: identify power	• ³ ²	
			• ⁴ Process: calculate value of 1 share	• ⁴ 0·768	
			• ⁵ Process: calculate the value of 8000 shares	● ⁵ 6150·64	

- 1. When working in pounds, where rounding or truncation has taken place, working must be given to at least 2 decimal places.
- 2. Final answer must be given to 2 decimal places where necessary.

Commonly Observed Responses:

1. For 6150.63 supported by working.

award 5/5 ✓✓✓✓✓

2. For 6160 (percentage calculations on individual share price, rounded to nearest penny at each step) supported by working. award $5/5 \checkmark \checkmark \checkmark \checkmark$

3. For $1.054 \times 5840 = 6155.36$

award 2/5√×××√

4. For $5840 \times 0.97 \times 1.042 = 5902.72$

award 4/5√√√x√

5. For $5664 \cdot 80 + 5664 \cdot 80 \times (0.042 \times 2) = 6140.64$

award 3/5√√√××

Q	Question		Generic scheme	Illustrative scheme	Max mark
2.	(b)		Ans: (£)4087·05		2
			•¹ Strategy: know to calculate	•¹ evidence	
			$\frac{5}{8}$ of 6560 and subtract commission		
			• ² Process: calculate amount received	•² 4087·05	

1. Where $ullet^1$ is not awarded $ullet^2$ can be awarded for a calculation of the form $\frac{a}{b} \times ... \pm 12.95$, where $\frac{a}{b}$ is equivalent to either $\frac{5}{8}$ or $\frac{8}{5}$.

Commonly Observed Responses:

1.
$$\frac{5}{8}$$
 of $6560 + 12.95 = 4112.95$

award 1/2×√

Qı	Question		Generic scheme	Illustrative scheme	Max mark
3.			Ans: (£)92·60		4
			•¹ Process: calculate new price	•¹1260+151·20 = 1411·20	
			•² Process: calculate the deposit	$e^2 \frac{1}{3}$ of 1411·20 = 470·40	
			• Process: calculate amount still payable	•³ 470·40+200=670·40 1411·20-670·40 = 740·80	
			• Communication: state how much each monthly payment is	• ⁴ 740·80÷8= 92·60	

- 1. Must have 0 at the end of 92.60 to gain final mark.
- 2. 4 is not available where candidate has divided their deposit by 8 see COR 9 and 10

Commonly Observed Responses:

1. For
$$\frac{1}{3}$$
 of 1260 leading to 98.90 award $3/4 \checkmark \times \checkmark \checkmark$

3. Not subtracting deposit leading to
$$151.40$$
 award $3/4 \checkmark \checkmark \checkmark \checkmark$

4.
$$1411 \cdot 20$$
 leading to $1211 \cdot 20$ leading to $\frac{1}{3}$ of $1211 \cdot 20$ leading to $807 \cdot 46$
 $807 \cdot 46 \div 8 = 100 \cdot 93$ award $3/4 \checkmark \times \checkmark \checkmark$

5. For
$$\frac{1}{3}$$
 of 1260 leading to $(1260 - 420 - 200) \div 8 = 80$ award $2/4 \times \times \checkmark \checkmark$

6. 12% of 1260 leading to 1411.20

$$\frac{1}{3}$$
 of $1260 = 420$
 $1260 - 620 = 640$
 $640 \div 8 = 80$ award $2/4\sqrt{\times}$

7.
$$1411 \cdot 20 \div 8 = 176 \cdot 40$$
 award $2/4 \checkmark \times \times \checkmark$

8.
$$1260 \div 8 = 157.50$$
 award $1/4 \times \times \checkmark$

9.
$$470 \cdot 40 \div 8 = 58 \cdot 80$$
 award $2/4\sqrt{4} \times 8$

10.
$$420 \div 8 = 52.50$$
 award $0/4 \times \times \times$

Question		on	Generic scheme	Illustrative scheme	Max mark	
4.	(a)		Ans: 71		1	
			•¹ Communication: calculate the most common heart rate	•¹ 71		
Not	es:					
Commonly Observed Responses:						
	(b)		Ans: 10		2	
			•¹ Communication: calculate either median	•¹ 61 or 71		

• 2 calculate other median and

difference 71-61=10

Notes:

1. ●² can be awarded if difference is found using incorrect medians.

• ² Communication/process: calculate other median and

difference

2. Correct answer with no working. award 2/2

Commonly Observed Responses:

1. 71-66=5 (incorrect median for "before") award $1/2\checkmark$ ×

2. 74.73-62.6=12.13 (difference of means) award $1/2\times\sqrt{}$

3. 71-66=5 (difference of modes) award $1/2\times\sqrt{}$

4. 36-29=7 (difference of ranges) award $1/2\times\sqrt{}$

Qı	Question		Generic scheme		Illustrative scheme	Max mark
	(c)		Ans: correct boxplot			4
			•¹ Process: calculate lower quartile	•1	$Q_1=67$	
			• Process: calculate upper quartile	•2	$Q_3 = 84$	
			• Communication: correct end points drawn	•3	59 and 95	
			• Communication: consistent box drawn	•4	Box showing Q_1 , Q_2 and Q_3	

- 1. The boxplot must be drawn to a reasonable scale.
- 2. If an unsuitable scale is used a maximum of 3/4 is available.
- 3. If the boxplot is drawn for "before exercise" a maximum of 3/4 is available.
- 4. If no working is shown and the boxplot is correct award 4/4.
- 5. If no working is shown and Q_1 and Q_3 are both incorrect, \bullet^4 is still available if consistent median is shown on boxplot.
- 6. If no working is shown and only one of Q_1 or Q_3 is correct, award \bullet^1 .
 - 4 is still available if consistent median is shown on boxplot.

Commonly Obser	Commonly Observed Responses:								

Question		on	Generic scheme	Illustrative scheme	Max mark
5.	(a)		Ans: 240(km)		2
			• 1 Process: calculate the distance from a scale drawing	•¹ 8 × 3000000 = 24000000	
			• Process/communication: give answer in kilometres	•² 24000000 ÷ 100 ÷ 1000 = 240	

1. Tolerance ± 1 mm on candidate measurement

Commonly Observed Responses:

1. For 2·4, 24, 2400, 24000 etc..., with or without working

award 1/2√×

(b)	Ans: 17 (knots)		3
	• 1 Strategy: know how to calculate average speed and to change hours and minutes to hours	$\bullet^1 \frac{240}{7 \cdot 5} = \dots$	
	• Strategy: know how to convert average speed into knots	•² ×0·54 =	
	• Process/communication: calculate average speed to 2 significant figures	• 3 17·28 = 17 (2 sig fig)	

Notes:

- 1. Candidates must work to at least 3 significant figures throughout where appropriate.
- 2. \bullet^2 can only be awarded for multiplying an average speed by 0.54 or equivalent.
- 3. 3 can only be awarded for a two-step calculation and rounding.

Commonly Observed Responses:

1. For
$$\frac{240}{450} \times 0.54 = 0.288 = 0.29$$

award 2/3×√√

2. For
$$\frac{240}{7 \cdot 3} \times 0.54 = 17.75... = 18$$

award 2/3×√√

Question		on	Generic scheme	Illustrative scheme	Max mark
5.	(c)		Ans: 139 (euro)		2
			•¹ Strategy: know how to calculate amount of euro	● ¹ 55% of 2400×1·15	
			• ² Process: calculate remaining euro	\bullet^2 1518 – 1379 = 139	

1. Where \bullet^1 is lost \bullet^2 is still available for a 3 step process.

Commonly Observed Responses:

(d)	(i)	Ans: 7/32	•¹ 7/32	1
		•¹ Communication: state probability		

Notes:

1. 7:32 is not acceptable for \bullet^1

Commonly Observed Responses:

	(ii)	Ans: 1/28		2
		• ² Strategy/process: calculate denominator	•² denominator of 28	
		• ³ Communication: state probability	•³ 1/28	

Notes:

1. If the answer to part (d)(i) is written as a ratio then 1:28 is acceptable for \bullet^3 .

1. For
$$\frac{1}{27}$$

2. For
$$\frac{28}{1}$$

Question		on	Generic scheme	Illustrative scheme	Max mark
6.	(a)		Ans: 102 (cages)		3
			•¹ Strategy: know to calculate two arrangements	•¹ Evidence	
			• Process: calculate one arrangement.	• 2 2·25m ÷ 0·75 = 3 cages 15m ÷ 0·85 = 17 cages Total = 3 x 17 × 2 = 102 cages	
			Process/communication: calculate second arrangement and make consistent conclusion	• 3 2·25m ÷ 0·85 = 2 cages 15m ÷ 0·75 = 20 cages exactly Total = 20 x 2 ×2 = 80	

- 1. When a candidate calculates two versions for one level and only doubles the larger, all three marks are still available.
- 2. Where a candidate considers more than two arrangements do not award \bullet^1 .

Commonly	Observed	Responses:
----------	----------	-------------------

1. For volume of truck \div volume of cage =109 award $0/3 \times \times$

Question		on	Generic scheme	Illustrative scheme	Max mark
6.	(b)		Ans: (£) 1026		3
			• 1 Process: calculate basic pay	$\bullet^1 \ 1\frac{1}{2} \times 14 \cdot 40 = 21 \cdot 60$	
			• Process: calculate overtime Pay	$\bullet^2 8\frac{1}{2} \times 14.40 \times 1.5 = 183.60$	
			• Process: calculate weekly gross pay	• 3 (183·60 + 21·60) × 5 = 205·20 × 5 = 1026	
			Alternative Strategy 1:		
			• 1 Process: calculate 10 hours basic pay	\bullet^1 10×14·40 = 144	
			• Process : calculate $8\frac{1}{2}$ hours	$\bullet^2 8\frac{1}{2} \times 7 \cdot 20 = 61 \cdot 20$	
			at $\frac{1}{2}$ time • 3 Process: calculate weekly gross pay	$_{\bullet}^{3}$ $(144+61\cdot20)\times5=1026$	

1. \bullet^3 is available for adding basic pay, overtime pay and multiplying them by 5

Q	Question Generic scheme		Generic scheme	Illustrative scheme	Max mark
7.	(a)	(i)	Ans: 19·5(°)		1
			•¹ Process: calculate mean	$\bullet^1 (24+22+19+18+17+17) \div 6 = 19.5$	

1. Correct answer with no working.

award 1/1

Commonly Observed Responses:

1. 24+22+19+18+17+17 = 19.5

award 0/1

(ii)	Ans: 2·88		3
	• ² Process: calculate $(x - \vec{x})^2$	• ² 20·25,6·25,0·25,2·25,6·25,6·25	
	• 3 Strategy: substitute into formula	•³ √(41·5÷5)	
	• 4 Process: calculate standard deviation	• ⁴ 2·88	

Notes:

1. Alternative method

Mark 2 -
$$\sum x = 117$$
 and $\sum x^2 = 2323$

- 2. Where rounding or truncation has taken place, working must be given to at least 2 decimal places.
- 3. Accept rounding or truncation to at least one decimal place for the final answer.
- 4. Mark 4 can only be awarded when a 2 step calculation has taken place.

Commonly Observed Responses:

(b)	Ans: two valid comments		2
	• ¹ Communication: comment regarding mean	• 1 eg on average Durban's temperatures are higher	
	• ² Communication: comment regarding standard deviation	• ² eg Durban's temperatures are less consistent	

Notes:

1. Examples of unacceptable comments:

The weather is warmer in Durban compared to Cape Town (no mention of average)

The weather varies more in Durban compared to Cape Town (no mention of temperature)

Question		า	Generic scheme	Illustrative scheme	Max mark
7.	(c)		Ans: New York and London • 1 Strategy/process: calculate one local time	• 1 Mumbai 9:00pm London 1:30pm New York 8:30am	3
			• ² Strategy/process: calculate the other two local times	• ² calculate remaining two local times	
			• ³ Communication: state offices which can take part	• ³ New York and London	
			Alternative Strategy 1:		
			• 1 Strategy/process: calculate one time difference	• 1 Mumbai +5 hrs 30 mins London -2 hrs New York -7 hrs	
			• ² Strategy/process:calculate remaining two time differences	• ² calculate remaining two differences	
			• 3 Communication: state offices which can take part	• ³ New York and London	
			Alternative Strategy 2:		
			• 1 Strategy/process: calculate how long until 3:30pm	•¹ 22 hours 5 minutes	
			• ² Strategy/process :calculate all three of the local times	• Mumbai 9:00pm London 1:30pm New York 8:30am	
Note			• 3 Communication: state offices which can take part	• ³ New York and London	

- Correct answer with no working award 0/3.
 Converting between 12 and 24 hour time with no other working and the correct conclusion award 0/3.

Question		on	Generic scheme	Illustrative scheme	Max mark
8.	(a)		 Ans: 707 (mm) Strategy: calculate short sides of triangle Strategy: evidence of the correct form of Pythagoras' theorem Process: calculate length of hypotenuse of triangle 	•¹ 500 •² 500² + 500² •³ 707·1068	3
Com	imon	ly Ob	served Responses:		
	(b)		Ans: 685000(mm²)	4	2

(b)	Ans: 685000(mm²)		2
	• 1 Strategy: evidence of calculating the area of the square encasing pentagonal shower base and subtract area of missing triangle	$\bullet^1 900^2 - \frac{1}{2} \times 500 \times 500$	
	• Process: calculate area of pentagonal base	•² 810000 - 125000 = 685000	

1. If the candidate converts units incorrectly do no award $ullet^2$.

Question		on	Generic scheme	Illustrative scheme	Max mark
8.	(c)		Ans: Zuzanna should pick the offset quadrant (since 732743 mm² > 685000 mm²)		4
			• 1 Strategy: evidence of quarter circle added to rectangles	•¹ Evidence	
			• Process: calculate the area of the quarter circle	$\bullet^2 \frac{1}{4} \times \pi \times 600 \times 600 = 282743$	
			Process: calculate area of shower tray	•³ 282743 + 450000 = 732743	
			• Communication: conclusion consistent with working	• ⁴ Zuzanna should pick the offset quadrant (since 732743 mm ² > 685000 mm ²)	
			Alternative Strategy 1:		
			• 1 Strategy: evidence of whole square minus area that is not part of the base.	•¹ Evidence	
			• Process: calculate the area of the quarter circle	$\bullet^2 \frac{1}{4} \times \pi \times 600 \times 600 = 282743$	
			Process: calculate area of shower tray	•³ 810000 – (360000 – 282743) = 732743	
			• Communication: conclusion consistent with working	• ⁴ Zuzanna should pick the offset quadrant (since 732743 mm ² > 685000 mm ²)	

Question	Generic scheme	Illustrative scheme	Max mark
----------	----------------	---------------------	-------------

- 1. \bullet^2 is available for finding area of a whole circle or any fraction of a circle with radius 600.
- 2. If the candidate uses the same incorrect unit conversion in part (c) as in part (b) do not penalise again.
- 3. \bullet ³ is only available for adding to 450000 (does not apply to the alternative strategy).
- 4. In alternative strategy, \bullet^3 is only available for subtracting from 810000.
- 5. Disregard incorrect numerical comparison in conclusion.

Commonly Observed Responses:

In the following cases: ●⁴ is also available for consistent conclusion.

- 1. For $\frac{1}{4} \times 3.14 \times 600 \times 600 = 282600$ leading to answer of **732600** award \bullet^1 , \bullet^2 and \bullet^3 .
- 2. For $\frac{1}{4} \times 3.14 \times 300 \times 300 = 70650$ leading to answer of **520650** award \bullet^1 and \bullet^3 .
- 3. For 810000 282743 = 527257 award \bullet^2 and \bullet^3 . (Whole square minus quarter circle).

[END OF MARKING INSTRUCTIONS]